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The Dyadic Green’s Functions for Cylindrical
Waveguides and Cavities

MOSHE KISLIUK, MEMBER, lEEE

Abstruet-Four dyadica are derived to fiid the electric and magnetic

fields generated by a given distribution of electric and magnetic (iicfmfing

aperture) currents in cyfindricaf wavegufdes and cavitiea of arldtrary cross

sections. Two sets of vectors are used to form the dyadics one set is an

expansion of “electric field” vect% and the other is so expansion of

%rmguetic field” vectors. Expficit expressions in terms of TE and TM

modes are obtained for the resulting electric and magnetic fields. Inside

the source regions there are additional components proportional either to

the axial components of the current densities (waveguides), or to the

current densities vectors (cavities).

I. INTRODUCTION

T HE FUNDAMENTALS of the electromagnetic

Green’s function theory have been developed by

Stratton [1], Morse and Feshbach [2], Tai [3], and Felsen

and Marcuvitz [4]. Expressions for the Green’s function

that determine the electric field generated by electric

currents in rectangular waveguides and cavities have been

obtained by Collin [5], Rahmat-Samii [6], and Tai and

Rozenfeld [7]. Recent research in waveguides (e.g., [8], [9])

show that there is a need for a straightforward and com-

prehensive way to obtain the dyadics that determine both

electric and magnetic fields generated by electric and

magnetic currents (including aperture) in cylindrical

waveguides and cavities of arbitrary cross section, and

thus overcome “the deficiencies of the Green’s functions

in the waveguide region” [8, p. 457].

This paper presents a detailed derivation of these dy-

adics. Explicit expressions are obtained for the electric

and magnetic fields generated by a given (or assumed)

distribution of electric and magnetic current densities.

The fields outside the source region are described by

expansions of TE and TM modes. The waveguide fields

inside the source region are also expansions of TE and

TM modes with additional axial components proportional

to the axial components of the current densities. The

fields inside the source regions in cavities have additional

vector components proportional to the full current densi-
ties.

11. DYADIC GREEN’S FUNCTIONS FOR THE WAVE

EQUATION

Consider a cylindrical infinite waveguide (or a cavity)

with perfectly conducting walls. The cross section is S

with a boundary E. The guide (cavity) is filled with an
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homogeneous isotropic medium, and is driven by an arbi-

trary distribution of electric and magnetic curren~s located

inside a finite volume V. The electromagnetic field in the

waveguide (cavity) is determined by the Maxwell equa-

tions

V xE= –ja@– J~

VXll=jw&+J, (1)

and by the homogeneous boundary conditions at the

walls, as well as the “radiation condition” at Iz l+ co in the

waveguide.

Equations (1) are solved by the standard methods of

vector analysis

E(r) = ~ ~e(r, r’)[ (jut)-*(~k2+ V’V’)Je(r’)
v

1–V’ x J~(r’) W’

H(r) = ~ ~~(r,r’)[ (jup)-*(~k2+ v’V’)J~(r’)
v

+ v’ xJ&’)]w’ (2)

where the primes on the dels denote differentiation with

respect to the primed coordinates r’ of the source point

k2 = ti2cp. (3)

~. and ~~ are the “electric” and “magnetic” dyadic

Green’s functions which satisfy the equation

(V2+ k2)F= – Id(r- r’) (4)

~ is the unity dyadic or idemfactor. The vectors that form

the dyadic ~, have zero tangential components on the

metallic walls, while the vectors that form ~w have zero

normal components on the walls.

Another well-known solution of (1) is obtained using

the Hertz potentials (e.g., [1, ch. 8]) Ze and Z-

E= (~k2+ VV)Z, –jupV X Zm

H= (~k2+ VV)Z~ +jueV x Ze (5)

where

Z,(r) = (jtic)-’~ ~.(r,r’)J,(r’) dv’
v

Zm(r) = (jq.t) -‘~ ~~(r,r’)J~(r’) dV’. (6)
v

Now, we substitute (6) into (5), taking into account that

the differential operators could be brought inside the
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integral signs since they affect only the observation point

coordinates r, while the integration is over the source

point coordinates r’. The final expressions for E and H

have the form

E(r) = (jti)- ‘j ~(r,r’)J.(r’)dV’ – ~ Xm(r,r’)Jm(r’)dV’
v v

H(r) = (jop)-’~ ~m(r,r’)Jm(r’)dV’ + ~ ~,(r,r’)Je(r’) dV’
v v

where

Te=(ikZ+vv)Fe Fm= V X Cm, ,etc.

are the dyadics that determine the electromagnetic

(7)

(8)

field

generated by the current densities J. and Jm. It is easy to

show by direct substitution that the fields (7) satisfy

Maxwell’s equations (1) and the divergence equations

V-E= –(jue)-lV.Je

V*H= –(jap)-’v -Jm (9)

which follow from (1), and require that both dyadic

Green’s functions satisfy the condition

v.t7#o. (lOa)

The fields (7) must also satisfy the boundary conditions

imposed by the conducting walls, and must be identical

with (2). Integrating (2) by parts over the finite volume of

the source region and comparing the result with (7) and

(8), we ~btain ~e following relationships between the

dyadics G. and G~

V’xce=vxcm v’xcm=vx Ge. (lOb)

Equations (10) and the boundary conditions imposed

on the vectors that form the dyadics G. and G~ determine

two complete sets of vectors eigenfunctions or eigenvec-

tors: one set with zero tangential components on the walls

(“electric” type), and the second set with zero normal

components on the walls (“magnetic” type). The eigenvec-

tors of both sets must satisfy the vector Hehnholtz equa-

tion

V2AV+ k;Av = O (11)

where k; is the eigenvalue, and A, is the corresponding

eigenvector.

The “electric” eigenvectors are well known [2]:

L,= k,- ‘ VfLv Mv = k,- ‘V X (ifMv)

Nv = kv-2V X V X (~jN,) (12)

where the caps denote a unit vector, and z is the axis of

the waveguide (cavity). The eigenvectors (12) are orthogo-
nal, i.e.,

J
L;. MVdV=

J
L;. NVdV=O

v~ v~

J
L:.LV dV= W=; 18P, etc. (13)

v~

where V. is the volume of the cavity, or of any part of the
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waveguide between two arbitrary chosen cross sections

located at Z1 and Zz. W~,, WM., and WN. are the (inverse)
normalization constants. The star is used to denote com-

plex conjugate values.

The “completeness relation” for the “electric” eigenvec-

tors is

~ [ WAD+ W~#v(r)M~(r’)
v

+ W~,NV(r)N~(r’) ] = ii3(r– r’). (14)

The “magnetic” eigenvectors are found with the help of

(lo)

C,= k,- ‘ VfcV Fv=kV-lVx Nv,

KV=kV-lVXMV. (15)

The eigenvectors (15) are orthogonal and also form a

complete set.

The vectors NV and F, are the electric and magnetic

fields of TM modes, A4, and K, are the fields of TE

modes, and L. and C. are curlless fields generated inside

the source region.

All the scalar functions in (12) and (15) satisfy the

Helmholtz equation

(V2+ k;)f, =0 (16)

with boundary conditions that are different for wave-

guides and cavities.

III. GREEN’S FUNCTIONS FOR WAVEGUIDBS

In order to satisfy the boundary conditions for the

“electric” and “magnetic” eigenvectors components de-

fined by (12) and (15), the scalar eigenfunctions ~ must

satisfy the following boundary conditions on the wave-

guide cross section boundary: the functions fLv and fNp,

and the normal (to E) derivatives of& and jMv must be

zero. Thus there are only two independent sets of scalar

eigenfunctiom

-f; =R =~,(~)exp( ~JRz)

fiv =f& = %(P) ew( ~hvz) (17)

which satisfy (16) with a continuous distribution of eigen-

values determined by the operating frequency (3); p is the

two-dimensional coordinate in the waveguide cross sec-

tion. The propagation constants in (17) are

flv= +(k2-r&)112

YV= +(k2–q;)’j2

where .$2 and q: are the eigenvalues

sional Hehnholtz equations

(V’+.g:)j=o (v’+q~)+,=o

la.

(18)

of the two-dimen-

with the boundary conditions on E: f, = O, i$b#in = O. For

evanescent (decaying) waves, i.e., for 1$,1> k or Iqvl >k, the

propagation constants j/3V and jyV in (17) and in all the

following formulas must be replaced by 18.1 and IYrl.
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Now we need two new sets of eigenvectors. The “elec-

tric” eigenvectors are

L,& (r) = P,*(p) exp( ~j@) (curlless)

MB’ (r) = R,’(p) exp( TjY.z) (TE)

N,* (r) = Q,*(p) exp( +j~rz) (TM). (20)

The “magnetic” eigenvectors are

C,’(r) = S,*(p) exp( +jyyz) (curlless)

K,* (r) = TV*(p) exp( Tjy,z) (TE)

Fp~ (r)= UV* (p) exp( ~jfl,z) (TM). (21)

All the eigenvectors satisfy the condition

f=(A+)*.

These new eigenvectors are related to the scalar eigen-

functions by the following expressions which are derived

after the substitution of (17) and (20) into (12), and of (17)

and (21) into (15)

P,’ = k ‘l(V T ~~v)~ (curlless)

Q:= k-’(~~itv + %?)L (TM)

R,*= k”l(VyVx F) (TE) (22)

and

S,* = k-’(v ~~jyp)~. (curlless)

t7,*=k-l(V~x E) (TM)

T,* = k “2( ZjyvV + 2q~)+V (TE). (23)

The “completeness relation” for the “electric” eigenvec-

tors is

Z [ Wr.P,(P)~XP’)+ ~@ Q,(P)QW)
v

+ WRVRV(P)R;(PI) ] = f8(P – d). (24)

The “completeness relation” for the “magnetic” eigenvec-

tors is analogous to (24).

The waveguide dyadic Green’s functions which satisfy

(4) and the needed boundary conditions are

G.(r,r’) = ~ { [ WppP,(p)P~(p’)
v

+ W~vQ,(p)Q:(p’)] ~,(fl,z,z’)

+ ‘R#P(~)~:(d)tv( y,z,z’)}

Gm(r,r’) = ~ {[ W~pSu(p)S~(p’)
v

+ WnT,(P) V(d)] {,( Y,%Z’)

+ ~uv UP(P) ‘U%’) {.( i%z’)} (25)

where

1.( Az>z’) = (Zjfl,)- ‘(~; +~~)

A;= U(Z – z’) exp[ –jflp(z – z’)]

.Afi = U(Z’ – z) exp[ –j/3P(z’ – z)] (26)

{
u(x) = y

X<o

? X>o

u(x) is Heaviside’s unit step function which is widely used,

together with its derivatives, in undergraduate textbooks

[10].

The derivatives of (26) are easily found

f;=ar./a2= ;(–A; +A;) {;= – /3;{, – 8(Z – z’).

(27)

The function {,(y, z,z’) and its derivatives are similar to

(26) and (27). The normalization constants are

Wpp = W@, WQ, = Wu, = W~p = W~v = k2<,-2Wh

W~V= W+,, WT, = WRV= WM, = WK, = k%.-zw$v (28)

where

~
Wfi-’= [jyda

s

J
W$;l= ]1/&da (29)

s

are the normalization constants of the scalar eigenfunc-

tions.

The dyadics ~(r, r’) and ~(r, r’) of (7) for a generalized

cylindrical waveguide can now be written in the form

Z= 2 [r,v~}(p’) + r~,Q;(pf) +rR,Rt(pf) ]

Tms ~ [ rs,s;(p’) + r,, gld) + ruvw(d) ] (30)
v

~== ~ [IIp,P;(p’) + II~VQ;(p’) + IIRVR;(p’)]
v

Xm= ~ [n~,s:(p’)+HTvq(P’) +~uv~:(P’)]. (31)
P

The vectors r and II are determined according to (8) by

the relations

rA = WA(ik2+ VV)[A(p)~(z,z’)] (32)

l-IA = W*VX [A(p) J(z,z’)]. (33)

For any vector A(p) that does not depend on the longitu-

dinal coordinate z, expressions (32), (33) yield

rA= WA{ f[k2z4 +v(v./i)-2j32/l=]

+{ ’[vAz+2(v 24)]–&4za(z–z’)} (34)

rIA= wA(rvx A+{ ’;xA) (35)

where I and {‘ are defined by (26) and (27).
The substitution of (34) and (35) into (30) and (31)

yields the following ex~ressions for the dyadic Green’s

functions ~e(r, /) and Xm(r, r’) that determine the electric

field in (7)

~(r, r’)= ~ ( W&[ ( &&V-2 vjVv’jj + &?~~fJi){p( B, ZYZ’)
v

– 22jj;13(z.– z’) + (Vfv,ff;– ff, V’f;) : {,( & z, z’) 1
+W4pk~V-2(V#Vx 2)(V’~~ x;){, (y, z,z’) ]() 36a
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– q,-*(viJ/,x 2)V’4+ J-V(YAZ’) ]) (36b)

where the primed functions f; and +; are defined with

respect to the source point transverse coordinates p’. The

dyadics ~. and ~~ can be rewritten in terms of TE and
TM modes with the help of (20)-(23)

{
~(r,r’) = ~ $ [ ~P- lW~#’V,+(r)N,-(r’)

v

+ yv-1WM#f,+(r)A4,-(r’) ] U(Z – z’)

k2
+ - [ i?,– lw~,h’v

2J
‘(r)N~(r’)

+ y,- ‘wMvM,-(r)Mp+(/)] 24(Z’– z)

– q#fv(P)wOa(z – z’)
}

(37a)

~m(r,r’) = ~ $ {[&“ ‘WN,N,+(r)F,-(r’)
v

+-f,- lW&,M,+(r)K,- (r’)] 42 – z’)

+ [ pv-lJVN.N.- (r)~.+ (r’)

+ y;lWM,Mp-(r)Kfl(r’) ]u(z’-z)}. (37b)

The dyadics ~~ and ~e are similar to (37). After the

substitution of (37) into (7), we obtain explicit expressions

for the electromagnetic field generated in a waveguide by

a given distribution of electric and magnetic current den-

sities J. and Jm,

+ yv–’ ((h@e&, ‘jkJm-K. )Mfl(r)

+&- l(w@& ‘jw~F.)Nv- (r)

‘lcl + )MV-(r)}+ y,– 1(@pJeL, –J mm

– (jac)- 12J,Z (38a)

H(r) = – ~ ~ { /3V–l(ofJm-~, + jkJc;p)F,+ (r)
v

- )Kfl(r)+ y,– 1(6XJm-& + jHeM,

+ /3V-‘(u.1~, + jkJ,~V)FV-(r)

+ y,- l(UCJ~K, + jkJ&,)K,- (r) }

where

J&v= W~,~Nfl(r’)-Je(ti)u(z’-z)dV’,etc.
v

Expressions (38) show that outside the source region the

fields are described by expansions of TM (vectors N., F,)

and TE (Mv, K,) modes. The curlless vectors are responsi-

ble only for the additional axial field components inside

the source region. Expressions (38) are suitable for the

separate computation of the amplitude and complex

power of each mode, propagating or evanescent. That

enables to find the load impedance of the exciting sources,

including apertures. The electric and magnetic fields given

by expansions (38) satisfy Maxwell’s curl (1) and diver-

gence (9) equations. This can be shown by direct substitu-

tion.

IV. GREEN’S FUNCTIONS FOR CAVITIES

A cylindrical cavity is a waveguide terminated at z= O

and z = d by perfectly conducting walls. The electric and

magnetic fields in the cavity can be expanded in terms of

the eigenvectors (12) and (15) defined in Section II. The

four scalar eigenfunctions of the cavity are related to the

waveguide two-dimensional eigenfunctions J and ~V of

(19)

f~, =1 cosr,z fc, = % cosr$z (39)

where r~= sT/ d, s-integer.

From (11) and (16) follows that the eigenvalues of all

the cavity eigenfunctions, scalar and vector alike, are

k:= .&*+ r: = &Ep (“electric” modes)

or

k~=q~+r~=u~q (“magnetic” modes) (40)

where W, is the resonant frequency of the respective mode.

These eigenvalues are real numbers because we

assumed that the walls are perfectly conducting, thus

providing homogeneous boundary conditions. However,

real cavities have some internal losses, and are usually

loaded. The Q factor of a real cavity accounts for all the

losses, which can be ascribed to the medium inside the

cavity, supposing that it has some finite conductivity.

The analysis of the free damped oscillations and of the

forced oscillations of such a cavity leads to a complex

value for k

where u is the frequency of the driving source, and Q, is

the value of the Q factor for the v resonant mode.
Now we can write the “electric” and “magnetic”

Green’s functions, which satisfy (4) and are finite at

resonant frequencies

– (j@p)- 1,2Jm (38b) + WM#Q14; + W~pNpN;) (42)
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where the primed vectors are defined with respect to the

source point coordinates r’, The expression for ~~ is

written in a similar way using the eigenvectors (15). Since

cavities’ eigenvectors are real functions, there is no need

for stars to denote conjugate values as in the Green’s

functions for waveguides (25).

The normalization constants are

W~, = d - lEJW&, WC, = d - lC~Wti (cttrlless)

W~V = Wfi = &,- ‘k; W~V (TM)

WMP= W~V = q,-zk: WCV (TE) (43)

where Wfi and W$V are the normalization constants de-

fined by (29), and

~~=
{

1, ,y=o
2, otherwise

(44)

The dyadics ~ and ~ which determine the electromagn-

etic field (7) in the cavity, are found after substituting

(42) into (8).

The dyadics ~~ and ~. that determine the magnetic field

in (7) can be found in a similar way,

After the substitution of (45), (46) into (7), we obtain

explicit expressions for the fields generated in a cavity by

a given (or assumed) distribution of the electric and

magnetic current densities J. and Jm

E(r) = ~ k,(k; – kz)- 1{ [(ju)- lkpJe~p –Jmm]MAr)
v

+ [ (jut)- lk,Je~p – Jm~,]Np(r) } – (jox)- *Je(r)

(47a)

+ [ (jtip) - lkpJm~V + J.NP]W) } – (A-L) - 14n(d

(47b)

where

The fields (47) satisfy Maxwell’s equation (1) and (9),

which is readily shown by direct substitution.

+ k2(k;– kz)- * ‘)].“( w~p~,~;+ w“&N,
[1]

Using the identity [2]

k2(k; –k2)-l=k:(k; – k2)-’ – 1 [3]

and the “completeness relation” (14) we obtain the final [4]

expression for the dyadic ~e(r, r’) [5]

‘.= ~ ‘;(k:– ‘2)- ‘( ‘MD~P~; + ‘NvN.N;) – ~8(r– “)s [6]

(45)

Expression (45) shows that in cavities the curlless vectors [7]

.LP and C, are responsible only for the fields (electric and

magnetic) in the source regions. The fields outside the [8]
source regions are fully described by the TE and TM

modes, i.e., by the eigenvectors M, and NV (electric field)

and Fv and K, ~magnetic field). [9]
The dyadic X~(r, r’) is

~~ = ~ k,(k; – kz) - ‘( W~,NpF; + W~pMpK;). (46) Do]
v
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