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The Dyadic Green’s Functions for Cylindrical
Waveguides and Cavities
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Abstract—Four dyadics are derived to find the electric and magnetic
fields generated by a given distribution of electric and magnetic (including
aperture) currents in cylindrical waveguides and cavities of arbitrary cross
sections. Two sets of vectors are used to form the dyadics: one set is an
expansion of “electric ficld” vectors, and the other is an expansion of
“magnetic field” vectors. Explicit expressions in terms of TE and TM
modes are obtained for the resulting electric and magnetic fields. Inside
the source regions there are additional components proportional either to
the axial components of the current densities (waveguides), or to the
current densities vectors (cavities).

I. INTRODUCTION

HE FUNDAMENTALS of the electromagnetic

Green’s function theory have been developed by
Stratton [1], Morse and Feshbach [2], Tai [3], and Felsen
and Marcuvitz [4]. Expressions for the Green’s function
that determine the electric field generated by electric
currents in rectangular waveguides and cavities have been
obtained by Collin [5], Rahmat-Samii [6], and Tai and
Rozenfeld [7]. Recent research in waveguides (e.g., [8], [9])
show that there is a need for a straightforward and com-
prehensive way to obtain the dyadics that determine both
electric and magnetic fields generated by electric and
magnetic currents (including aperture) in cylindrical
waveguides and cavities of arbitrary cross section, and
thus overcome “the deficiencies of the Green’s functions
in the waveguide region” [8, p. 457].

This paper presents a detailed derivation of these dy-
adics. Explicit expressions are obtained for the electric
and magnetic fields generated by a given (or assumed)
distribution of electric and magnetic current densities.
The fields outside the source region are described by
expansions of TE and TM modes. The waveguide fields
inside the source region are also expansions of TE and
TM modes with additional axial components proportional
to the axial components of the current densities. The
fields inside the source regions in cavities have additional
vector components proportional to the full current densi-
ties.

II. Dvyabic GREEN’S FUNCTIONS FOR THE WAVE
EquaTtIiON

Consider a cylindrical infinite waveguide (or a cavity)
with perfectly conducting walls. The cross section is S
with a boundary £. The guide (cavity) is filled with an
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homogeneous isotropic medium, and is driven by an arbi-
trary distribution of electric and magnetic currents located
inside a finite volume V. The electromagnetic field in the
waveguide (cavity) is determined by the Maxwell equa-
tions

VXE=—jopH— 1T,

Vx H=jweE+J, (1)

and by the homogeneous boundary conditions at the
walls, as well as the “radiation condition” at |z|-—>c0 in the
waveguide.

Equations (1) are solved by the standard methods of
vector analysis

E(r)= [ G.(r)[ () (TR +VV)I(7)
—V'xJ,(F)]av’
H(r)= fVG‘m(r, ) Geow) " TR+V'V)T, ()

+ V') (r)]av’ ()

where the primes on the dels denote differentiation with
respect to the primed coordinates # of the source point

3)

G:, and G_,,, are the “electric” and “magnetic” dyadic
Green’s functions which satisfy the equation

(V2+k)G=—18(r—r) 4)

I is the unity dyadic or idemfactor. The vectors that form
the dyadic G, have zero tangential components on the
metallic walls, while the vectors that form G,, have zero
normal components on the walls.

Another well-known solution of (1) is obtained using
the Hertz potentials (e.g., [1, ch. 8]) Z, and Z,

E=(IK*+VV)Z,—jouV X Z,,

k%= w%p.

H=(Ik*+VV)Z, +jweVXZ, Q)
where
z(n=(je)”" [ G(rr)I(r)aV’
2,()=Cew ™ [ Gu(rr) T ()av'. (6

Now, we substitute (6) into (5), taking into account that
the differential operators could be brought inside the
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integral signs since they affect only the observation point
coordinates r, while the integration is over the source
point coordinates #'. The final expressions for E and H
have the form

E(r)=(jwe)"" fVYe(r,r’)Je(r’)dV’-— fyfm(r,r’)Jm(r’)dV’

H(r)=(joop) ™" fVY,,,(r,r')Jm(ﬂ) dv'+ fV)‘(;(r, P (r)dV’
™

where
V,=(IK*+VV)G, X,,=VXG,etc. ®)

are the dyadics that determine the electromagnetic field
generated by the current densities J, and J,,. It is easy to
show by direct substitution that the fields (7) satisfy
Maxwell’s equations (1) and the divergence equations

V-E=—(jwe) 'V-J,

V-H=—(jop) 'V J,, ©)

which follow from (1), and require that both dyadic
Green’s functions satisfy the condition

V-G+O0. (10a)

The fields (7) must also satisfy the boundary conditions
imposed by the conducting walls, and must be identical
with (2). Integrating (2) by parts over the finite volume of
the source region and comparing the result with (7) and
(8), we obtain the following relationships between the
dyadics G, and G,

VXG,=VXG, V'XG,=VxXG,. (10b)

Equations (10) and the boundary conditions imposed
on the vectors that form the dyadics G, and G,, determine
two complete sets of vectors eigenfunctions or eigenvec-
tors: one set with zero tangential components on the walls
(“electric” type), and the second set with zero normal
components on the walls (“magnetic” type). The eigenvec-
tors of both sets must satisfy the vector Helmholtz equa-

tion
VZA,,+k3A,,=0 (11)

where k2 is the eigenvalue, and A4, is the corresponding
eigenvector.
The “electric” eigenvectors are well known [2]:

Ll/ = kv_ ! VfLy Ml’ = ky_ ! V X (2va)
N, =k VX Vx(3f,) (12)

where the caps denote a unit vector, and z is the axis of
the waveguide (cavity). The eigenvectors (12) are orthogo-
nal, i.e.,

fVoL;-M,dV= fVoL;-N,dV=0

fV LrLdV= W38, etc.

o

(13)

where V, is the volume of the cavity, or of any part of the
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waveguide between two arbitrary chosen cross sections
located at z, and z,. W, W,,,, and W, are the (inverse)
normalization constants. The star is used to denote com-
plex conjugate values.

The “completeness relation” for the “electric” eigenvec-
tors is
2 [ WL,,L,,(I')L:(I")+ WM,,M,,(I‘)M:(T,)

+ Wy, N(Nr)]=18(r~r). (14)

The “magnetic” eigenvectors are found with the help of
(10

Cv=k;lfov Fv=kv_1VXNv’

K=k 'VxM, (15)

The eigenvectors (15) are orthogonal and also form a
complete set.

The vectors N, and F, are the electric and magnetic
fields of TM modes, M, and K, are the fields of TE
modes, and L, and C, are curlless fields generated inside
the source region.

All the scalar functions in (12) and (15) satisfy the

Helmholtz equation
(V2+K})f,=0 (16)

with boundary conditions that are different for wave-
guides and cavities.

IIL

In order to satisfy the boundary conditions for the
“electric” and “magnetic” eigenvectors components de-
fined by (12) and (15), the scalar eigenfunctions f, must
satisfy the following boundary conditions on the wave-
guide cross section boundary: the functions f;, and fy,,
and the normal (to £) derivatives of f;, and f,,, must be
zero. Thus there are only two independent sets of scalar
eigenfunctions

GREEN’S FUNCTIONS FOR WAVEGUIDES

fiy = fa=1,(p) exp(FjB,2)
- St =15 =¥, (p) exp(Fjv,2) amn

which satisfy (16) with a continuous distribution of eigen-
values determined by the operating frequency (3); p is the
two-dimensional coordinate in the waveguide cross sec-
tion. The propagation constants in (17) are

B=+(2 )"
v, =+ (k272" (18)

where £2 and n? are the eigenvalues of the two-dimen-
sional Helmholtz equations

(T +82)f,=0 (Va4 =0

(£=0.5-%.=0) (19)

with the boundary conditions on £: f,=0, &y, /dn=0. For
evanescent (decaying) waves, i.e., for |£|>k or |n,| >k, the
propagation constants jB8, and jy, in (17) and in all the
following formulas must be replaced by | 8,| and |v,|.
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Now we need two new sets of eigenvectors. The “elec-
tric” eigenvectors are

L (r)=P*(p)exp(F/jB,z) (curlless)
M*(r)=R>(p)exp(F/jv,z)  (TE)
N (=05 exp(FjB,z)  (TM). (20)
The “magnetic” eigenvectors are
Cx(r)=S8,"(p)exp(FJjv,z)  (curlless)
K*(r)=T,*(p)exp(Fjy,2)  (TE)
EX(n=U (p)exp(FjB,z)  (TM). (21)

All the eigenvectors satisfy the condition

A~ =(4%)*
These new eigenvectors are related to the scalar eigen-
functions by the following expressions which are derived
after the substitution of (17) and (20) into (12), and of (17)
and (21) into (15)

PE=k Y (VFZB,)f, (curlless)

O =k"FjBV+it))f, (IM)

R*=k~'(Vy,x2)  (TE) (22)
and

S*=k"Y(VF3y,)y, (curlless)

U=k~ (Vf,x2) (TM)

Lr=k (= V+m)y, (TE).  (23)

The “completeness relation” for the “electric” eigenvec-
tors is

+ W R,(0)R ()| =18(p—p)- (24)

The “completeness relation” for the “magnetic” eigenvec-
tors is analogous to (24).

The waveguide dyadic Green’s functions which satisfy
(4) and the needed boundary conditions are

G(r,r)= 2 {[ W5 P,(0)P}p)
+W5,Q,(0) 210)]5,(B.2.2)
+ Wi R, (0) R} (0')$,(v,2,2') }

Gu(r,r)= 3 {[ WsS,(0)S2(P)

+ WTv I;,(p) Tj(p/) ] fv(‘)/,Z,Z/)

+ W U,(0) Uo')S,(B.2,2') } (25)
where
$(B.2,2)=(2B) "' (Ag, +Ag)
Ag=u(z—z)exp[ —jB,(z—z')]
‘A =u(z'—z)exp[ —jB,(z'— z)] (26)
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=10 x<0
u(x) {l, x>0

u(x) is Heaviside’s unit step function which is widely used,
together with its derivatives, in undergraduate textbooks
[10].
The derivatives of (26) are easily found
§=085,/3z=3(=Ng+A)  §'=-BX,—8(z~2).
(27)
The function §,(y,2,2z") and its derivatives are similar to
(26) and (27). The normalization constants are

WPv = wa WQ» = WUP = WNV = WFv = kzgv_zWﬁ'

WSV = W\{«V’ WTP = WRV = WMV = WKI’ = kzr'v_ZWx[w (28)
where
W '= [ £ da
W' = [ |4, da (29)

are the normalization constants of the scalar eigenfunc-
tions. _

The dyadics Y(r,7) and X(r,7) of (7) for a generalized
cylindrical waveguide can now be written in the form

Y= 2 [Tp Pl (0)+To, 0 (0") +Tr, R} p) |

7m = 2 [FSDS:(pI) + FTV 7‘:(’)/) + rUv U:‘(p/)]

14

(30)

X, =2 [, Pr(p) + 1y, QX (o) + T, RY(p) |

X_m = g [HSPS:‘(p,) +HTV TT(P/) +HUII U:‘(p’)] (31)

The vectors T and II are determined according to (8) by
the relations

T,=W,(Ik*+VV)[4(p){(z,2)] (32)
I, =w,VX[A(p){(z,2') ] (33)
For any vector A(p) that does not depend on the longitu-
dinal coordinate z, expressions (32), (33) yield
C,=W,{{[KA+V(V-A)-28°4, ]
+{'[VA,+2(V-4)]—24,8(z-2")}
I,=W,({VXA+{'2xA4)
where { and {’ are defined by (26) and (27).
The substitution of (34) and (35) into (30) and (31)
yields the following expressions for the dyadic Green’s

functions }_’e(r, r) and Ym(r, r’) that determine the electric
field in (7)

(34)
(35)

Fnr)= 3 (Wl (B2 +£25,)0( B.2,2)
— 220 f8(z- )+ (VL — V') % ¢ ,B,Z,z')]

W R (T, X YT X DG (1,2,7) | (368)
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%)= 3 { Wl (V< 214,822
9
+HVVEX D5 6B |
W] (T X DR (1,2.7)

SOV )] a6

where the primed functions f] and i, are defined with
respect to the source point transverse coordinates p’. The
dyadics Y, and X,, can be rewritten in terms of TE and
TM modes with the help of (20)—(23)

_ 2
T(nr)= 3 S 1A W N ()

+v, Wi, M, (M, (F) Ju(z— 2')

k2
+ Ej[ Bv-IWNVIVV— (r)Nv-’-(r,)

+y, W, M, (M, (F) Ju(z' — 2)

- WAGREG-D] @

Eor)= S ([ 67 W N OF ()
4 W M (DK (F) Ju(z— 2)
+[ B W N (DES ()
1T W M (DK (1) [z =)}, (3Th)

The dyadics Y,, and X, are similar to (37). After the
substitution of (37) into (7), we obtain explicit expressions
for the electromagnetic field generated in a waveguide by
a given distribution of electric and magnetic current den-
sities J, and J,,

B =~ 5 S { B ol =K, )N ()

3, @y = K ) M ()
B oy = K YN (1)
2,7 ey~ ) M (7))
~(jwe) 21, (382)
H()= =5 3 (87w I3 E (7

2 0+ K 30 ) K ()

+ B Sy + K ()

7w IR ) K ()

— (o)™ 2 e (38b)
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where

Ton= Wy [ N7 (01T ulz =)V’

b =Wy, fVN,,+(r’)-.Ie(r’)u(z’ — 2)dV", ete.

Expressions (38) show that outside the source region the
fields are described by expansions of TM (vectors N, F,)
and TE (M, K,) modes. The curlless vectors are responsi-
ble only for the additional axial field components inside
the source region. Expressions (38) are suitable for the
separate computation of the amplitude and complex
power of each mode, propagating or evanescent. That
enables to find the load impedance of the exciting sources,
including apertures. The electric and magnetic fields given
by expansions (38) satisfy Maxwell’s curl (1) and diver-
gence (9) equations. This can be shown by direct substitu-
tion.

IV. GREEN’S FUNCTIONS FOR CAVITIES

A cylindrical cavity is a waveguide terminated at z=0
and z=d by perfectly conducting walls. The electric and
magnetic fields in the cavity can be expanded in terms of
the eigenvectors (12) and (15) defined in Section II. The
four scalar eigenfunctions of the cavity are related to the
waveguide two-dimensional eigenfunctions f, and 4y, of
(19)

Sar, =4, sinrz

fC,,—_—yb,,COSI‘sZ

Jo,=f,sinrz
Saw=1,cosrz
where r, = sw /d, s-integer.

From (11) and (16) follows that the eigenvalues of all
the cavity eigenfunctions, scalar and vector alike, are

R

(39)

(*“electric” modes)
or

(40)

where w, is the resonant frequency of the respective mode.

These eigenvalues are real numbers because we
assumed that the walls are perfectly conducting, thus
providing homogeneous boundary conditions. However,
real cavities have some internal losses, and are usually
loaded. The Q factor of a real cavity accounts for all the
losses, which can be ascribed to the medium inside the
cavity, supposing that it has some finite conductivity.

The analysis of the free damped oscillations and of the
forced oscillations of such a cavity leads to a complex
value for k

kKi=n?+ri=wln (“magnetic” modes)

k2 =wep(1-jw,/wQ,) (41)
where w is the frequency of the driving source, and Q, is
the value of the Q factor for the » resonant mode.

Now we can write the “electric” and “magnetic”
Green’s functions, which satisfy (4) and are finite at
resonant frequencies

G(rr)=3 (K2 — k¥ (W,LL,

+ WMVMVMI:+ WNvNVNv,) (42)
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where the primed vectors are defined with respect to the
source point coordinates . The expression for G, is
written in a similar way using the eigenvectors (15). Since
cavities’ eigenvectors are real functions, there is no need
for stars to denote conjugate values as in the Green’s
functions for waveguides (25).

The normalization constants are

W,=d "W, We,=d 'eW,,  (curlless)
WNV = Wﬂ/ = 51/- 2k112WLv (TM)
WMP = WKP = nyﬂ 2k72WCV (TE) (43)

where W, and W,, are the normalization constants de-
fined by (29), and

1,
%={L
The dyadics ¥ and X which determine the electromag-

netic field (7) in the cavity, are found after substituting
(42) into (8).

Y=3[-w.LL

s=0

otherwise (44)

+ k2(kv2_ k2) - : ( WMVM'MV, + WNVNIIA,V/) ] .

Using the identity
Kk~ k%) = k(K2 -k -1

and the “completeness relation” (14) we obtain the final
expression for the dyadic Y, (r,F)

}7e= 2 ktJZ(kf— kz)_l(WMvMVMv’-*- WNVNDNV/)— I_a(r—r,)’

(45)
Expression (45) shows that in cavities the curlless vectors
L, and C, are responsible only for the fields (electric and
magnetic) in the source regions. The fields outside the
source regions are fully described by the TE and T™M
modes, ie., by the eigenvectors M, and N, (electric field)
and F, and K, (magnetic field).

The dyadic )—(—m(r, r)is

X, =3 k(k2— k%)~ (Wy,N,F,+ Wy, M,K}). (46)

The dyadics ¥, and X, that determine the magnetic field
in (7) can be found in a similar way.

After the substitution of (45), (46) into (7), we obtain
explicit expressions for the fields generated in a cavity by
a given (or assumed) distribution of the electric and
magnetic current densities J, and J,,

E(n) =3 k(= k)" {[ ()™ Koy = I | M)

+ [(jwe)— 1ky‘]eNv _‘JmFr]Nv(r)} - (wa)_ lJe(r)
(47a)

H(r)= 3 k(K= k)" {[Goow) ™o+ Jeans | K1)

+ [ (o) "k, + T, | (1)} = Gow) ™', (1)
(47b)

where

sty = f M,(r)-J(r)dV, etc. (48)
14

The fields (47) satisfy Maxwell’s equation (1) and (9),
which is readily shown by direct substitution.
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